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Abstract
In this paper, we explore high performance software and hard-
ware implementations of an automatic speech recognition sys-
tem that can run locally on a mobile device. We automate the
generation of key components of our speech recognition system
using Three Fingered Jack, a tool for hardware/software code-
sign that maps computation to CPUs, data parallel processors,
and custom hardware. We use Three Fingered Jack to explore
energy and performance for two key kernels in our speech rec-
ognizer, the observation probability evaluation and across-word
traversal.

Through detailed hardware simulation and measurement,
we produce accurate estimates for energy and area and show
a significant energy improvement over a conventional mobile
CPU.
Index Terms: hardware, compiler, speech recognition, energy-
efficient

1. Introduction
Automatic speech recognition (ASR) has become an enabling
technology on todays mobile devices. However, current solu-
tions are not ideal. An ideal mobile ASR solution would be
capable of running continuously (always-on), provide a low-
latency response, have a large vocabulary, and operate without
excessive battery drain while untethered to WiFi. Mobile de-
vices are limited by their batteries that gain only 4% capacity
annually from technology innovations[1]. Given the mobile en-
ergy constraint, we seek to understand the energy consumption
of various speech recognition approaches and provide a produc-
tive means for designing energy efficient ASR solutions.
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Figure 1: Energy consumption for 60s of ASR on a menagerie
of commercial platforms. All devices achieve real-time perfor-
mance on Wall Street Journal 5k corpus[2]. Energy recorded
using a “watts up? PRO” power meter.

Some current mobile solutions, such as Apple’s Siri, pro-
vide ASR capabilities by sending audio or feature vectors to
a remote server in the cloud over a wireless network. Unfor-
tunately, using the cloud to offload ASR may not be the most
energy efficient approach to delivering speech recognition solu-
tions. We calculate that sending the same 60 seconds of speech

data as 39-dimension single-precision Mel-Frequency Cepstral
Coefficients (MFCCs) feature vectors would consume between
100 and 340 joules using the 3G energy-per-bit values presented
by Miettinen[3]. The large range in 3G energy consumption is
due to differences caused by geographic location, data rate, and
radio vendor. At this rate, a typical 20 kJ battery would last be-
tween 1 to 3 hours when performing continuous speech recog-
nition. Moreover, cloud-based solutions also do not work in low
connectivity environments and thus are incapable of providing
robust service in a variety of environments.

Another option is to employ an ASR solution that runs lo-
cally on the mobile device. In order to evaluate software-based
solutions, we performed a simple experiment using 60 seconds
of audio from the WSJ5k corpus. We measured the energy con-
sumption on several hardware platforms. Figure 1 shows the
local energy consumption characteristics and summarizes our
results: our most efficient platform requires approximately 200
joules to perform ASR on 60s of audio. At this rate, a typical
20 kJ battery would last roughly 100 minutes. On the plus side,
this solution works with or without connectivity.

Speed and energy efficiency can be improved by employ-
ing custom hardware designed for speech recognition. Several
hardware-based solutions have been proposed during the last 30
years [4, 5, 6, 7, 8, 9, 10]. These approaches claim performance
or energy benefits of 10 to 100× over a conventional micro-
processor. However, these approaches employ an inflexible de-
sign process in which high-level algorithmic design decisions
are hard-coded into a low-level implementation. This means
that the system would potentially require a complete overhaul
in order to experiment with a new algorithmic approach or lan-
guage model. Additionally, these systems are point samples,
and do not give us a full understanding of the design space for
speech recognition hardware solutions.

In this paper we explore high performance software and
hardware implementations of an ASR system that can run lo-
cally on a mobile device. We automate the generation of key
components of our speech recognition system using Three Fin-
gered Jack (TFJ) [11], a vectorizing compiler for CPUs, data
parallel processors, and custom hardware. Through detailed
hardware simulation we are able to produce accurate estimates
for energy and performance. We show that our custom solu-
tions are 3.6× and 2.4× more energy efficient than a conven-
tional microprocessor and a highly-optimized vector processor,
respectively.

1.1. Related Work

To our knowledge, no prior research has used automatic hard-
ware/software co-design tools to explore energy trade-offs
among different ways of providing ASR. Previous work has
shown the performance benefits of data-parallel processors
[12, 13, 14] or power and energy benefits of custom hardware



[8, 6, 7, 9, 10] for ASR.

2. Three Fingered Jack
As shown in Figure 2, the design space for speech accelerators
is large. At one extreme is the conventional microprocessor,
easy to program but relatively low-performance and energy in-
efficient. At the other extreme is custom hardware crafted solely
for speech recognition. Constructing functional prototypes of
ASR systems for each hardware substrate is a daunting prospect
as each target requires a radically different set of programming
and design tools. For example, implementing an application
on a data parallel processor requires a complete rewrite in lan-
guages such as OpenCL or CUDA. Likewise, designing custom
hardware requires describing the micro-architecture of an ac-
celerator in a register-transfer language (RTL) such as Verilog
or VHDL. Building a single accurate speech recognition design
point is challenging. As a consequence, researchers are unable
to fully explore the solution design space.
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Figure 2: The design space of hardware accelerators: Perfor-
mance, for a given task, increases from left to right while pro-
gramability decreases. Figure adapted from Fisher [15]

Dual-core 
CPU 

Graphics 
processor 

Cache 

Audio and video 
accelerators 

 7 to 10 m
m

 

7 to 10 mm 

PE	  0	  

PE	  N
	  

PE	  1	  

…
.. 

Custom HW speech accelerator 

Figure 3: A system on a chip: a large fraction of the SoC die
area is dedicated to custom accelerators, such as video encoder-
s/decoders or image processing. The speech recognition solu-
tions explored in this paper are intended be a small logic block
(under 5mm2) on a SoC.

We use Three Fingered Jack (TFJ) to explore implemen-
tations of speech kernels across multicore CPUs, data-parallel
processors, and custom generated hardware. TFJ applies ideas
from optimizing compilers, such as dependence analysis and re-
ordering transformations[16], to a restricted set of Python loop
nests. It does this to uncover parallelism. Once parallelism has
been discovered, TFJ is able to map it to a number of potential
platforms.

The TFJ compilation process begins with a dense loop nest
specified in Python using NumPy arrays. The TFJ front-end
then generates an intermediate XML representation of the ab-
stract syntax tree (AST) that is interpretable by TFJ’s optimiza-
tion engine. TFJ then uses dependence analysis to compute

valid partial orderings of the loop-nest to unlock parallelism.
After extracting parallelism, separate backends are used to gen-
erate code for data-parallel processors ( vector processors ) and
multicore processors. It also generates Verilog hardware de-
scriptions for custom processing engines. The multi-processor
and data-parallel processor backends generate C++ with intrin-
sics for data-parallel processors and calls to low-level threading
libraries (such as pThreads) for multiprocessor support. TFJ
also supports LLVM [17] just-in-time (JIT) compilation on x86
multicore. This allows for software development on a conven-
tional PC workstation as TFJ is a loadable extension to a Python
2.7 installation.

The custom hardware backend automatically generates pro-
cessing engines (PEs) to be included on a future system on
a chip (SoC). The PEs operate like a data-parallel processor;
however, instead of executing a generic data-parallel instruction
(such as vector-add or vector-load), TFJ PEs execute the entire
body of a loop as an application-specific data-parallel instruc-
tion. The custom hardware synthesizer maps the LLVM inter-
mediate representation produced by TFJ’s reordering engine to
Verilog RTL. It does this to create PEs. The configuration of
individual PEs can be tuned by allowing for more hardware re-
sources (e.g. more floating-point adders or integer multipliers).

3. Our ASR system
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Figure 4: Architecture of our speech recognizer.

An ASR application accepts an utterance as input wave-
form and infers the most likely sequence of words and sentences
of that utterance. Our ASR system is built on top of the ICSI
Parallex decoder [13]. As shown in Figure 4, Parallex is built
around a hidden Markov model (HMM) inference engine with
a beam search approximation and may be easily decomposed
into feature extraction and an inference engine. Feature extrac-
tion generates 39-dimensional MFCCs for every 10ms frame
from an analysis window of 25ms. The MFCCs are fed to the
inference engine to recognize words and sentences. The infer-
ence engine has two key phases: observation probability calcu-
lation using a Gaussian Mixture Model (GMM) and a graph-
based knowledge network traversal. The GMM computes the
probabilities of phones in a given acoustic sample. These prob-
abilities are used by the HMM to compute the most likely se-
quence of words using the Viterbi search algorithm. We use a
beam search approximation to prune the search space.

The inference engine at the heart of Parallex uses the linear
lexical model (LLM) to implement the graph-based knowledge
network used for language modeling. The LLM representation
distinguishes between two types of transitions: within-word and
across-word[18]. LLM has a highly regular structure that makes
it favorable to a parallel implementation; however, this regular-
ity comes at a cost as the representation contains many dupli-
cated states[13].

We have two versions of Parallex: a portable C++ version
and a hybrid implementation written in a combination of Python
and C++. The hybrid implementation is written in Python to
take advantage of TFJ while the rest of the application remains



in C++. This approach allows us to demonstrate the power of
TFJ without entirely reimplementing the speech recognizer in
Python. We evaluate both versions of Parallex using the 5000-
word Wall Street Journal corpus.

In order to focus our optimizations, we profiled our portable
C++ speech recognizer running on a PandaBoard[19] to simu-
late contemporary mobile hardware. The profiling results led
us to focus our efforts on accelerating the GMM and across-
word transition kernels, as they consume 60% and 25% of the
run-time, respectively.

3.1. Accelerated kernels

def GMM(In, Mean, Var, Out, Idx, n):
for i in range(0,n):
for f in range(0,39):
for m in range(0,16):
ii = Idx[i];
Out[ii][m] += (In[f]-Mean[ii][f][m])*(In[f]-

Mean[ii][f][m])*(Var[ii][f][m]);

Figure 5: GMM-based observation probability evaluation ker-
nel in Python for TFJ acceleration

We evaluate the observation probability of labels in the
acoustic model using a GMM. The GMM is a computationally
intense kernel that consumes 60% of the runtime in our portable
recognizer. As shown in Figure 5, the GMM computation is
a regular dense loop-nest; however, several arrays are indexed
with an indirect map as beam search prunes improbable labels.

def step4(..):
for i in range(0,num):

thisStateID = endsQ_stateID[i];
endwrdStTStep = endsQ_wrdStTStep[i];
endsWordID = Chain_wpID[ thisStateID ];
endsFwdProb = Chain_fwrdProb[ thisStateID ];
prev_likelihood = endsQ_likelihood[i];
lumpedConst = prev_likelihood + endsFwdProb;
thisOffset = bffst[ endsWordID ];
thisbSize = bSize[ endsWordID ];

for b in range(0,thisbSize):
w = nxtID[b+thisOffset];
t = prob[b+thisOffset] + lumpedConst;
bigramBuf[w] = t;
lock(step4_lck[w]);
if(bigramBuf[w] < likelihood[w]):

likelihood[w] = t;
updateIndices[w] = i;

unlock(step4_lck[w]);

Figure 6: Across-word traversal kernel represented in Python
for TFJ acceleration

Our LLM knowledge network has two types of transitions:
within-word and across-word. We use Chong’s [12] special-
ized data-layout to represent the first, middle, and last states of
the triphone chains. His triphone chain layout, used for word
pronunciation, enables efficient use of memory bandwidth on
parallel platforms.

The within-word kernel used in the LLM representation
operates on the first and middle states of the triphone chain
to update the middle and last states. Profiling experiments of
our portable speech recognizer showed the within-word kernel
consumed less than 5% of the runtime. We therefore decided
against further optimizations.

In contrast, the across-word kernel shown in Figure 6, con-
sumes 25% of the runtime. The across-word kernel operates

on the last states of triphone chains to update the first states.
Parallelizing this kernel requires fine-grained synchronization.
This is because multiple end states transition to the same next
state. This could result in interleaved updates resulting in a race
condition. Fine grained synchronization is efficiently handled
by TFJ as the custom hardware generator has support for multi-
word atomic memory operations.

To demonstrate the efficient parallel codes generated by
TFJ, we run our hybrid Python and C++ speech recognizer on a
conventional PC desktop. As mentioned in section 2, we have
a JIT compilation backend on x86 processors for TFJ in a con-
ventional Python install. We obtain a real-time factor 1 (RTF) of
0.0625 when our hybrid Python/C++ speech recognizer runs on
a quad-core 3.4 GHz Intel i7-2600 using TFJ. This corresponds
to 16× faster than real-time performance. To contextualize the
TFJ on a desktop results, the same LLM based recognizer with
manually parallelized C++ runs at 0.05 RTF while the hybrid
recognizer without TFJ runs at greater than 330 RTF. This is
due to the low performance of the Python interpreter.

4. Results
4.1. Experiential setup

We trained the acoustic model that we used in Parallex with
HTK[20] using the speaker independent training data from the
Wall Street Journal 1 corpus. The acoustic model has 3,006
16-mixture Gaussians while the LLM recognition network has
123,246 states and 1,596,884 transitions. We set the language
model weight to 15. The word error rate of our TFJ accelerated
solution is 11.4%, which matches the error rate of the state-of-
the-art Parallex recognizer.

We used the UC Berkeley Rocket processor as our base-
line CPU; it is an in-order decoupled 5-stage RISC-V processor
[21]. The Rocket processor was used because we were able
to fully instrument the processor for energy fine-grained en-
ergy measurement. In addition, we believe the energy and per-
formance characteristics of Rocket are very similar to ARM’s
newest low-power CPU, the ARM Cortex-A7[22]. To eval-
uate data-parallel solutions, we used the Hwacha vector-core
accelerator for Rocket. The Hwacha vector-core integrates
ideas from both vector-thread[23, 24] and conventional vec-
tor processors[25] to achieve high performance and energy effi-
ciency. TFJ was used to generate optimized C implementations
for Rocket and Hwacha. The resulting kernels were compiled
for the RISC-V ISA using GCC 4.6.1.

We ensure that all accelerator solutions achieve real-time
performance. On the other hand, our solutions are designed for
embedded solutions. We see little benefit of over provision-
ing hardware sources that achieve better than real-time perfor-
mance.

4.2. Experimental verification

In order to validate our custom hardware design points, we mod-
ified the software speech recognizer running on our workstation
to interface with the Synopsys VCS logic simulator. This con-
figure allows us to selectively verify that our kernel accelerators
function properly; unfortunately, each WSJ utterance took well
over a day to run, making verification of the WSJ5k corpus un-
feasible using logic simulation alone. To remedy our slow sim-

1The real-time factor (RTF) metric is the ratio of the number of sec-
onds required to process one-second of speech input. An RTF of less
than 1.0 connotes better than real-time performance.
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Figure 7: VLSI layouts. Note: scale listed for each accelerator.

ulation runtimes and to provide more credibility to our auto-
matically generated custom hardware solutions, we ported our
simulation infrastructure to the Xilinx Zynq SoC FPGA[26].
The Xilinx Zynq platform provides both reconfigurable logic
and interconnect (like a traditional FPGA) along with two ARM
Cortex-A9 processors. We ran the accelerator logic on a Xilinx
Zynq SoC+FPGA, which sped-up our verification process by
approximately 90× over that of logic simulation. This enabled
330 utterances (2,404 seconds of audio) to run on our simulated
hardware in just under 42 hours.

4.3. VLSI results and energy statistics

Rocket +
Hwacha

GMM HW Within-
word
HW

Floating-point multipliers 2 2 0
Floating-point adders 2 2 2
Floating-point comparators 2 0 2
Clock frequency (MHz) 833 920 860
Gate count 213188 38294 19544
Total area (mm2) 1.7 0.16 0.13

Table 1: VLSI statistics for the three designs under considera-
tion.

We targeted TSMC’s 45nm GP CMOS library using a
Synopsys-based ASIC toolchain: Design Compiler for logic
synthesis, IC Compiler for place-and-route, and PrimeTime for
power measurement. Following best industrial practice[27],
we used logic simulation to extract cycle counts and detailed
circuit-level simulation to record power. The GMM and across-
word traversal accelerators have direct-mapped 4 kByte caches
and share a 256 kByte L2 cache. The processors we compare
with have a 32 kByte 4-way set-associative L1 data-cache, a 16
kByte 2-way set-associative instruction cache, and a 256 kByte
8-way set-associative L2 cache. The SRAM macros used for all
caches were generated by Cacti 6.0 [28]. We used DRAMSim2
to model a DDR3-based memory subsystem[29].

To make our study complete, we have included images of
VLSI layout from IC Compiler for our vector processor, GMM
accelerator, and across-word traversal. These results are shown
in Figures 7a, 7b, and 7c respectively. More detailed statistics
of each design are listed in Table 1. Four Rocket processors
were required to achieve real-time performance on the GMM
kernel. Both Hwacha and custom generated hardware required
two processors for real-time performance.

The energy results of our study are presented in Table 2.

Rocket Rocket +
Hwacha

Custom HW

GMM 0.86 J 0.58 J 0.24 J
Word-to-word 0.15 J 0.15 J 0.09 J
Rest of system 0.2 J 0.2 J 0.2 J

Complete system 1.21 J 0.93 J 0.54 J
Table 2: Energy results for WSJ clip 441c0201 (6.07 seconds)
with TFJ generated solutions. The “rest of system” category
includes all kernels not accelerated with TFJ.

The Rocket and Rocket+Hwacha based solutions achieve a RTF
of 1.0. The automatically generated hardware solutions have a
RTF of 0.94. In order to calculate total system power (processor
+ memory), we assume our memory subsystem will consume
384 mW. These are conservative DDR3 power statistics from
a commercial vendor[30]. Table 3 estimates the total hours of
ASR achievable with the solutions presented in this work.

Rocket Rocket +
Hwacha

Custom HW

System power 0.20 W 0.15 W 0.09 W
System + memory power 0.58 W 0.54 W 0.47 W
Hours of ASR 9.5 h 10.3 h 11.8 h

Table 3: Expected hours of ASR with hardware/software solu-
tions assuming a 20 kJ battery

5. Summary
We wish to achieve always available mobile ASR untethered to
WiFi or 3G networks. To this end, we have proposed and con-
structed an ASR system with a variety of implementations of the
two key kernels used in speech recognition. Our results show
the potential energy savings using data-parallel processors and
custom hardware for mobile speech recognition. Our results
show energy savings of 3.6× over that of a conventional mo-
bile processor and 2.4× over that of a highly-optimized vector
processor. We also demonstrated a productive design-space ex-
ploration of potential speech recognition solutions using Three
Fingered Jack. Using our best automatically generated solution,
given current battery lifetimes, we can run ASR just under 12
hours.

We have demonstrated software and hardware mobile ASR
solutions that are capable of running all day while provid-
ing real-time performance. We believe our preliminary results
clearly demonstrate the benefit of accelerators for mobile ASR.
We plan to extend our research to larger vocabulary models.
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